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We experimentally demonstrate imaging in the long-wave
infrared (LWIR) spectral band (8 µm to 12 µm) using a single poly-
mer flat lens based upon multilevel diffractive optics. The device
thickness is only 10 µm, and chromatic aberrations are corrected
over the entire LWIR band with one surface. Due to the dras-
tic reduction in device thickness, we are able to utilize polymers
with absorption in the LWIR, allowing for inexpensive manufac-
turing via imprint lithography. The weight of our lens is less
than 100 times those of comparable refractive lenses. We fabri-
cated and characterized 2 different flat lenses. Even with about
25% absorption losses, experiments show that our flat polymer
lenses obtain good imaging with field of view of 35◦ and angu-
lar resolution less than 0.013◦. The flat lenses were characterized
with 2 different commercial LWIR image sensors. Finally, we show
that, by using lossless, higher-refractive-index materials like sili-
con, focusing efficiencies in excess of 70% can be achieved over
the entire LWIR band. Our results firmly establish the potential for
lightweight, ultrathin, broadband lenses for high-quality imaging
in the LWIR band.

diffractive lenses | chromatic aberrations | infrared imaging

Long-wave infrared (LWIR) imaging refers to imaging in
the wavelength band approximately from 8 µm to 12 µm,

and is important for applications ranging from defense (1, 2),
medicine (3), and agriculture (4) to environmental monitoring
(3, 5). In order to attain high transparency, conventional refrac-
tive lenses in the LWIR band require materials such as silicon,
germanium, or chalcogenide glasses. The weight of these con-
ventional lenses can be too high for many applications. The
increased weight limits the range of operation of unmanned
aerial vehicles (6). In addition, such optics render head-mounted
night vision goggles heavy, and cause neck and head injuries
in soldiers as well as reducing their situational awareness (7).
Here, we show that, by appropriately designing thin Multilevel
Diffractive Lenses (MDLs), we can correct for image aberra-
tions, including chromatic aberrations in the LWIR band, and
thereby reduce the weight of such lenses by over 2 orders of
magnitude when compared to conventional refractive lenses.
In addition, since our MDLs are very thin, that is, thickness
of ∼λ0, the design wavelength, and the resulting absorption
losses are low, we can utilize polymers for the lens material,
which are easier to manufacture (for instance, via microimprint
lithography).

Conventional refractive optics is comprised of curved surfaces
and become thicker with increasing resolution. That is, in order
to bend light at larger angles, the radius of curvature must be low-
ered, and, consequently, the lens becomes thicker and heavier.
Recently, metalenses have been proposed as a means to reduce
the thickness of refractive lenses (8–11). Metalenses are com-
prised of constituent units that act as scattering elements (of
subwavelength thickness), which render a prescribed local phase
shift to light upon scattering. By engineering the spatial distri-
bution of such constituent units in the lens plane, it is possible
to correct for image aberrations. Although most demonstrations

of metalenses have been in the visible and in the near-IR bands,
there was a recent example of a metalens for one wavelength in
the LWIR band, λ = 10.6 µm (11). The constituent element of
this metalens consisted of a square lattice of cylindrical pillars,
whose diameter ranged from 1.5 µm to 2.5 µm, height = 6.8 µm,
and minimum pitch = 6.2 µm. This device demonstrated a focus-
ing efficiency of only 35% at the design wavelength. Another
recent demonstration of a metalens-based LWIR microlens
also achieved similar performance with similar fabrication
challenges (12). No broadband LWIR metalenses have been
demonstrated so far.

Recently, we showed that, when appropriately designed,
MDLs could perform better than metalenses, while being eas-
ier to fabricate (13). Such MDLs have been demonstrated in
the terahertz (14, 15) and in the visible bands (16, 17). By com-
bining 2 MDLs, optical zoom has also been demonstrated (18).
In fact, the MDLs require minimum feature width determined
approximately by min{λ}/(2*NA), where min {λ} is the small-
est wavelength in the operating spectral band and NA is the
numerical aperture of the lens. This feature width is far larger
than the corresponding value in the case of metalenses (which
tend to be smaller than min{λ}/5). In addition, MDLs are nat-
urally polarization-insensitive and can achieve high efficiencies
over large bandwidths and at high NAs (13). The main draw-
back of MDLs is their somewhat complex multilevel geometry.
However, with modern imprint lithography, such geometries can
be manufactured at high volumes and at low costs (19). Here,
we designed several MDLs for the LWIR, fabricated 2 of them,
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Fig. 1. Design and focusing performance of LWIR MDLs. (A and G) The
optimized height profile and (B–F and H–L) the simulated point-spread func-
tions at the design wavelengths for lenses with focal length and numerical
aperture of (A–F) 19 mm and 0.371 and (G–L) 8 mm and 0.45.

and then experimentally demonstrated the imaging performance
using 2 different commercially available LWIR image sensors.
It is important to distinguish our work from previous reports
that utilize Fresnel lenses in the LWIR. An 80-µm-thick polymer
Fresnel lens combined with a 755-µm-thick refractive silicon lens
was used to report the thinnest LWIR lens (total device thickness
∼0.8 mm) capable of imaging (20). A high-order Silicon Fresnel
lens made out of silicon was used in combination with an aper-
ture for wide-angle imaging in the LWIR band as well (21), which
had a total device thickness of 1 mm. In comparison, the device
thickness of our single MDL is only 10 µm (a reduction of 100×)
and it comprises a patterned polymer. Most importantly, MDLs
are corrected for the entire operating bandwidth, while Fresnel
lenses are not.

Results and Discussions
First, we designed rotationally symmetric MDLs, whose con-
stituent element is a ring of width equal to 8 µm, and whose
height is determined by nonlinear optimization. This optimiza-
tion is based upon a gradient-descent-assisted direct binary
search (DBS) technique, a modified version of the conven-
tional direct binary search method. Full details of our algorithm
are published in refs. 14 and 15. Advanced methods like, for
example, the adjoint method (22–26) can also be employed to
achieve similar results with computational complexity compa-
rable to our modified DBS technique. However, our method
lends itself to a simple and modular implementation that enables
incorporation of multiobjective functions and fabrication con-
straints in a natural manner. To briefly summarize, we maximize
the wavelength-averaged focusing efficiency of the MDL, while
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Fig. 2. Analysis of aberrations of the f = 19 mm lens (NA = 0.371) at λ = 8
µm. The aberrations coefficients at other design wavelengths are included
in SI Appendix.

choosing the distribution of heights of the rings that form the
MDL. We used an operating band of 8 µm to 12 µm, and
the measured dispersion of a positive-tone photoresist, AZ9260
(Microchem GmbH) in this band (SI Appendix). We designed
2 MDLs, one each with focal length and NA of 19 mm and
0.371 and 8 mm and 0.45. Both designs had a constraint of,
at most, 100 height levels. The designed profiles and corre-
sponding simulated point spread functions (PSFs) are shown in
Fig. 1, where close to diffraction-limited focusing at all wave-
lengths is clearly observed. The full width at half maximum
(FWHM) of the focal spots were computed for each design
wavelength and averaged to obtain a single FWHM to compare
to the diffraction-limited FWHM (SI Appendix). The simulated
average FWHM and the diffraction-limited FWHM are 14.3
µm and 13.5 µm and 11.2 µm and 12.2 µm for the MDLs
with f = 19 mm, NA = 0.371 and f = 8 mm, NA = 0.45,
respectively.

We computed the focusing efficiency of the MDLs as the
power within a spot of diameter equal to 3 times the FWHM
of the spot divided by the total power incident on the lens (12,
27). The focusing efficiency spectra were computed for all wave-
lengths of interest and plotted in SI Appendix, Fig. S2 for the
2 MDLs shown in Fig. 1. The wavelength-averaged (8 µm to
12 µm) focusing efficiency for the 2 lenses is 43% and 65%,
respectively. The smaller lens has higher efficiency. As described
in SI Appendix, we also computed that about 25% of the inci-
dent power is absorbed in the polymer film for both lenses,
which accounts for a portion of the reduced focusing efficiency.
As described later, it is possible to increase these efficiencies
by replacing the polymer with silicon, which is nonabsorbing in
the LWIR.

We utilized the simulated wavefront after the MDL to com-
pute the equivalent lens aberrations. The aberrations are defined
as the difference between the simulated wavefront and the ideal
spherical wavefront, and the difference is expressed as a linear
sum of Zernike polynomials. The coefficients of the Zernike
polynomials are illustrated in Fig. 2 for the MDL with NA =
0.371, f = 19 mm computed at λ = 8 µm. Similar results were
obtained for the other MDLs and wavelengths, and are included
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Fig. 3. Experiment details. Optical micrographs of the fabricated (A) f =
19 mm and (B) f = 8 mm lens. Each lens assembled onto the LWIR image
sensor for (C) f = 19 mm lens with the Tau 2 sensor (FLIR Systems, Inc.) and
(D) f = 8 mm lens with the LW-AAA sensor (SeekThermal).
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Fig. 4. MTF of lens with f = 19 mm, NA = 0.371 and Tau 2 image sensor
(FLIR Systems, Inc.). (A) MTF curves for different temperatures show good
consistency. (B) Raw images used to compute the MTF curves.

in SI Appendix. These calculations confirm that MDLs exhibit
aberrations that are comparable to or better than those seen in
conventional refractive lenses.

The devices were fabricated using grayscale lithography (SI
Appendix) (16–18). The optical micrographs of the fabricated
MDLs are shown in Fig. 3 A and B for the f = 19 and
8 mm lenses, respectively. Each lens was then assembled onto
a different image sensor: Tau 2 camera core (FLIR Systems,
Inc.) for f = 19 mm lens (Fig. 3C) and the LW-AAA camera
(SeekThermal) for f = 8 mm lens, whose original lens was
manually removed (Fig. 3D). We first characterized the mod-
ulation transfer function (MTF) of the f = 19 mm, NA =
0.371 lens coupled with the Tau 2 sensor (28). A hot plate with
insulator in front was used as an object, and the MTF was esti-
mated using the slanted edge (SI Appendix). The temperature
of the hot plate was adjusted from 60 ◦C to 160 ◦C, and the
results are summarized in Fig. 4. There are no significant dif-
ferences in the MTF with temperature, confirming achromatic
imaging.

Several images were taken with both cameras for character-
ization, and these are summarized in Fig. 5. All figures except
Fig. 5D are with the f = 19 mm lens and Tau 2 camera (FLIR
Systems, Inc.), while Fig. 5D is with the f = 8 mm lens and LW-
AAA (Seek Thermal) camera. Fig. 5 A and D is of a heated
resistor coil, whose diameter is ∼250 µm. The object distance
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Fig. 5. Exemplary images taken using the flat-lens LWIR cameras. (A–C and
E, G, I, and K) Images are taken with the f = 19 mm lens and Tau 2 core,
and (D) image is with f = 8 mm and the LW-AAA camera. Object distance =
(zo) and image distance = (zi) are labeled in the figures. (E, G, I, and K) The
images and (F, H, J, and L) corresponding linescans of 2 holes in a metal
block placed in front of a hot plate heated to 80 ◦C taken at increasing
distances from the camera. The holes are well resolved at a distance as large
as 762 mm, which corresponds to an angular resolution of ∼0.013◦.

(zo) and the image distance (zi) for each image are labeled in
the corresponding figure. By placing a metal block with holes
in front of a hot plate (80 ◦C) at various object distances, we
can estimate the resolving power of the camera as indicated in
Fig. 5 E–L. When the object is 762 mm away from the lens,
the demagnified image of the holes is spaced by 170 µm and
these are still well resolved. This spacing corresponds to 10 pix-
els on the image sensor and represents an angular resolution of
∼0.013◦. The field of view of the images is about 35◦× 30◦ in
the horizontal and vertical axes, respectively. Several videos are
also obtained from both cameras and have been included in SI
Appendix. These include videos of a resistor coil (see Movies S1
and S2 from the Tau 2 and the LW-AAA cameras, respectively),
and a human subject indoors (Movie S3) and outdoors (at night;
Movie S4).

For imaging efficiency measurements, we used a sharp nail as
the object (tip diameter = 4.5 mm). The nail was heated to a
desired temperature and imaged onto the Tau 2 camera core
(FLIR Systems, Inc.) (see SI Appendix for details and Fig. 6A).
The imaging efficiency was estimated as the ratio of the sum of
the pixel values inside the spot size to the sum of all of the pixel
values in the entire frame. The results are summarized in Fig. 6B.
An example image at 50 ◦C is shown in Fig. 6C. The imaging effi-
ciency was estimated using spot size of W, 2W, and 3W as shown
in Fig. 6B, where W = 0.272 mm, the FWHM of the demagni-
fied image of the tip of the heated nail. Note that the imaging
efficiency is distinct from the focusing efficiency, due to the finite
size and temperature of the object that is being imaged. In all
cases, the efficiency peaks approximately below 60 ◦C. This can
be understood by appealing to Wein’s law, which determines the
peak emission wavelength of a black body at a given temperature
(Fig. 6D). For temperatures above 60 ◦C, the peak wavelength is
shorter than 8 µm, which is below the designed spectrum of the
MDL, and, as expected, the efficiency drops. This is further exac-
erbated by the spectral response of the image sensor, which drops
off below ∼8 µm. Increased focusing efficiency will also lead to
better-quality images. This can be readily seen by noting that
power that is not focused into the main lobe essentially causes
background noise and therefore reduces contrast of the image.
An ideal singlet refractive lens or an ideal blazed diffractive lens
can both achieve very close to 100% focusing efficiency at one
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Fig. 6. Characterization of focusing efficiency. (A) Schematic of experi-
ment. (B) Imaging efficiency of f = 19 mm lens with Tau 2 camera core
as a function of the object (hot plate) temperature. (C) Peak wavelength
corresponding to a blackbody temperature using Wein’s law, showing
that efficiency peak occurs for temperatures of ∼50 ◦C, which corre-
sponds to λpeak ≈ 8.5 µm. (D) Exemplary point-spread function at 50 ◦C
(raw data).
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Fig. 7. The optimized height profile of Si MDL for NA = 0.371 and focal
length = 19 mm with (A) 8 levels, (B) 16 levels, (C) 32 levels, and (D) 64
levels. The corresponding simulated focusing efficiencies for the MDL with
(E) 8 levels, (F) 16 levels, (G) 32 levels, and (H) 64 levels. It is observed that
the focusing efficiency tends to improve only marginally beyond 16 levels in
this case. All other design parameters are the same.

wavelength. Although it is difficult to quantify a single cutoff
value for efficiency (since that is dependent upon many other
factors, including sensor characteristics and the image postpro-
cessing pipeline), we can generally state that better efficiency
leads to better images.

From such a perspective, one can utilize higher refractive
index material to increase the focusing efficiency. Since Si
exhibits high refractive index and low absorption in the LWIR
band (3.42 at λ = 8 µm), it is a good candidate material. We
designed several MDLs using Si with focal length and NA equal
to 19 mm and 0.371, respectively. The MDLs were designed
with height level constraints of 8, 16, 32, and 64 with the corre-
sponding optimized height profiles as shown in Fig. 7 A–D. The
corresponding plots of focusing efficiency as function of wave-
length are shown in Fig. 7 E–H. Simulated PSFs of all lenses are

included in SI Appendix. With 8 height levels, the Si lens per-
forms approximately equally to the polymer lens with 100 height
levels. Once we increase the number of height levels in the Si lens
to 16 or higher, the focusing efficiency averaged over all wave-
lengths is increased significantly to over 71%. Finally, we noticed
that the wavelength-averaged efficiency does not increase sig-
nificantly beyond 16 levels. Sixteen height levels in Si may be
achieved by 4 lithography and etch steps, which are very stan-
dard processes in semiconductor manufacturing (29). Although
this fabrication approach will be more expensive than imprinting
directly onto a polymer, in some applications, the additional cost
is likely to be justifiable.

Conclusion
Reducing the weight, thickness, and number of optical elements
will have important applications for all spectral bands. Here,
we demonstrate that this can be achieved in the LWIR band
using MDLs. We note that our MDLs are quite distinct from
conventional diffractive lenses because of their achromaticity.
Nevertheless, conventional diffractive lenses are designed for a
specific wavelength, and their focusing performance drastically
drops at wavelengths away from the design value.

Materials and Methods
Design and Optimization. All MDL designs were obtained using nonlinear
optimization using a modified gradient-descent based search algorithm that
maximized wavelength-averaged focusing efficiency.
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